Mantle Structure Beneath the Damara Belt in South‐Central Africa Imaged Using Adaptively Parameterized P‐Wave Tomography

Author:

Saeidi Hesam1ORCID,Hansen Samantha E.1,Nyblade Andrew A.23ORCID,Haag Ryan1ORCID

Affiliation:

1. Geological Sciences Department The University of Alabama Tuscaloosa AL USA

2. Geosciences Department The Pennsylvania State University University Park PA USA

3. School of Geosciences University of the Witwatersrand Johannesburg South Africa

Abstract

AbstractMany seismic tomography studies have indicated that the African Large Low Velocity Province (LLVP) extends from the lower mantle beneath southern Africa into the upper mantle beneath eastern Africa; however, it has been questioned whether the LLVP structure may also extend to the north or northwest beneath south‐central Africa. Debates regarding the upper mantle structure beneath the Damara Belt contribute to this uncertainty. Some studies suggest the Damara Belt is underlain by thermally perturbed upper mantle; however, other studies indicate the region is not associated with anomalous structure. Here, we use a comprehensive P‐wave travel‐time data set and an adaptive model parameterization to develop a new tomographic model for the Damara Belt and surrounding regions. Our results show that seismically slow structure beneath the Damara Belt is relegated to depths greater than ∼1,200 km, indicating that the LLVP is not significantly affecting this region. However, further to the northeast, the LLVP structure obliquely rises and crosses the mantle transition zone near the Irumide Belt, where it then extends into the upper mantle. The seismic structure beneath the Damara Belt and neighboring areas in our model correlates well with tectonic observations at the surface, including variations in heat flow, the distribution of geothermal features, the locations of rifts, and estimates of dynamic topography.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3