The Upper Mantle Geoid for Lithospheric Structure and Dynamics

Author:

Salajegheh F.1,Afonso J. C.123ORCID

Affiliation:

1. Department of Earth and Environmental Sciences Macquarie University Sydney NSW Australia

2. Faculty of Geo‐Information Science and Earth Observation (ITC) University of Twente Enschede The Netherlands

3. Department of Earth and Space Sciences Southern University of Science and Technology Shenzhen Guangdong China

Abstract

AbstractGeoid anomalies offer crucial information on the internal density structure of the Earth, and thus, on its constitution and dynamic state. In order to interpret geoid undulations in terms of depth, magnitude and lateral extension of density anomalies in the lithosphere and upper mantle, the effects of lower mantle density anomalies need to be removed from the full geoid (thus obtaining the residual “upper mantle geoid”). However, how to achieve this seemingly simple filtering exercise has eluded consensus for decades in the solid Earth community. While there is wide agreement regarding the causative masses of degrees >10 in spherical harmonic expansions of the upper mantle geoid, those contributing to degrees <7–8 remain ambiguous. Here we use spherical harmonic analysis and recent tomography and density models from joint seismic‐geodynamic inversions to derive a representative upper mantle geoid, including the contributions from low harmonic degrees. We show that the upper mantle geoid contains important contributions from degrees 5 and 6 and interpret the causative masses as arising from the coupling between the long‐wavelength lithospheric structure and the sublithospheric upper mantle convection pattern. Importantly, the contributions from degrees 3 < l < 8 do not show a simple power‐law behavior (e.g., Kaula's rule), which precludes the use of standard filtering techniques in the spectral domain. Our upper mantle geoid model will be useful in studies of (a) lithospheric structure, (b) dynamic topography and mantle viscosity, (c) lithosphere‐asthenosphere interactions and (d) the global stress field within the lithosphere and its associated hazards.

Funder

Centre of Excellence for Core to Crust Fluid Systems, Australian Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3