Magnetic Properties of Lightning‐Induced Glass Produced From Five Mineral Phases

Author:

Woods T. W.1ORCID,Feinberg J. M.2ORCID,Genareau K.1ORCID,Park C.34ORCID,Won H.5,Hong Y.‐K.5

Affiliation:

1. Department of Geological Sciences The University of Alabama Tuscaloosa AL USA

2. Department of Earth Sciences Institute for Rock Magnetism University of Minnesota Minneapolis MN USA

3. Department of Electrical and Computer Engineering Mississippi State University Starkville MS USA

4. Now at Department of Electrical Engineering University of Wisconsin‐Milwaukee Milwaukee WI USA

5. Department of Electrical and Computer Engineering The University of Alabama Tuscaloosa AL USA

Abstract

AbstractThe physical properties of minerals are modified by the high temperatures of volcanic lightning during explosive eruptions. Alteration involves rapid heating and volatilization, melting, and fusion of ash grains within the discharge channel, followed by rapid quenching into new glassy textures. High current impulse experiments reveal that lightning alters not only the morphology and mineralogy of volcanic ash but also its magnetic properties. We investigate lightning‐induced magnetic changes in five igneous minerals (<32 μm powders of albite, labradorite, augite, hornblende, and magnetite) by comparing hysteresis parameters before and after impulse experiments conducted at peak currents of 25 and 40 kA. Both the paramagnetic and ferrimagnetic behaviors of the samples were altered, which we interpret as a superposition of two processes. (a) Rapid melting allows iron contained within inclusions of Fe‐oxides and Fe‐bearing silicates to diffuse into the newly formed melt, thereby increasing the paramagnetism of the resulting glass. (b) Nucleation and growth of magnetite from the newly formed melt increases the ferrimagnetic behavior of the post‐experimental samples. Nominally non‐Fe‐bearing silicates like albite and labradorite have significantly increased paramagnetism and ferrimagnetism. Fe‐bearing silicates like augite and hornblende contain higher concentrations of ferrimagnetic inclusions, from which Fe diffuses into the newly formed melt, thereby increasing paramagnetism while decreasing ferrimagnetism. Experiments conducted on magnetite produced new magnetite crystals with dendritic habits. Although specific to volcanic ash, these results provide important insights into the magnetism of other materials affected by lightning on Earth, the Moon, and throughout the solar system.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3