Do Subducted Seamounts Act as Weak Asperities?

Author:

Lee Sungho1ORCID,Choi Eunseo1ORCID,Scholz Christopher H.2

Affiliation:

1. Center for Earthquake Research and Information The University of Memphis Memphis TN USA

2. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

Abstract

AbstractThe additional work of ploughing makes seamounts more resistant to subduction and more strongly coupled than smoother areas. Nevertheless, the idea that subducted seamounts are weakly coupled and slip aseismically has become dominant in the last decade. This idea is primarily based on the claim that a seamount being subducted in the southern Japan Trench behaves this way. The key element in this assertion is that large M ∼ 7 earthquakes that abut the leading edge of the seamount require that the seamount be aseismically sliding to initiate them. More recent observations show instead that the surrounding region is aseismically sliding while the seamount acts as a stationary buttress. Here we re‐examine this case and model it with both weak and strong asperity assumptions. Our modeling results show that only a strong asperity model can produce this type of earthquake. Strong asperities also rupture the seamount in great earthquakes with long recurrence times. This provides the previously unknown source for a series of great tsunami earthquakes that have occurred along the southern Japan Trench, the most recent being the 1677 M8.3–8.6 Enpo Boso‐oki tsunami earthquake. The “weak asperity” hypothesis is thus found to be false in this foundational example.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3