Syn‐Rift Magmatism and Sequential Melting of Fertile Lithologies in the Lithosphere and Asthenosphere

Author:

Mayle M.1ORCID,Harry D. L.1ORCID

Affiliation:

1. Department of Geosciences Colorado State University Fort Collins CO USA

Abstract

AbstractThe timing and rate of decompression melting of a compositionally heterogeneous mantle during continental rifting are assessed with a new one‐dimensional geodynamic code, MELT1D. MELT1D computes pressure and temperature in the extending lithosphere and rising asthenosphere and calculates the resulting melt fraction and eruption rates for different lithologies. A series of models simulate syn‐rift melt production from (a) dry and wet depleted lherzolite similar to the mantle that underlies most mid‐ocean ridges, (b) dry and wet relatively fertile ultramafic compositions representing plume or primitive mantle material, (c) pyroxenite representing recycled ultramafic oceanic crust or magmatic metasomes, and (d) basalt representing recycled mafic crust or metasomes. The models predict sequential melting of the different compositions that is broadly consistent with basalt eruption histories in many Phanerozoic rifts. Results show a progressive transition in magma sources as the lithosphere thins, beginning with melting of wet mantle and compositionally fertile mafic components near the lithosphere‐asthenosphere boundary during the earliest stages of extension. This transitions to magmatism dominated by melting of relatively fertile ultramafic components (pyrolitic and pyroxenitic compositions) as extension progresses, and finally to melting of ambient lherzolite asthenosphere as lithosphere thinning approaches breakup. Mantle composition, pre‐rift lithosphere thickness, and mantle temperature exert the greatest controls on the timing and volumes of magmas produced from each lithology. In general, a cool or thick lithosphere has a greater capacity to sequester fertile lithologies than thin or warm lithosphere, and thus has a greater capacity to produce early syn‐rift magmas without requiring a hot mantle plume.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3