The Amplitude and Timescales of 0–15 ka Paleomagnetic Secular Variation in the Northern North Atlantic

Author:

Reilly Brendan T.1ORCID,Stoner Joseph S.2ORCID,Ólafsdóttir Sædís3ORCID,Jennings Anne4ORCID,Hatfield Robert5ORCID,Kristjánsdóttir Gréta Björk6ORCID,Geirsdóttir Áslaug7ORCID

Affiliation:

1. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

2. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

3. Reykjavík Energy Reykjavík Iceland

4. INSTAAR University of Colorado Boulder CO USA

5. Department of Geological Sciences University of Florida Gainesville FL USA

6. School of Engineering and Natural Sciences University of Iceland Reykjavík Iceland

7. Faculty of Earth Sciences University of Iceland Reykjavík Iceland

Abstract

AbstractWe investigate the amplitude and frequency of directional geomagnetic change since 15 ka in the Northern North Atlantic (∼67°N) using five “ultra‐high” resolution continental shelf sediment cores deposited at rates greater than 1 m/kyr. The ages of these cores are constrained by 103 radiocarbon dates with reservoir ages assessed through tephra correlation to terrestrial archives. Our study aims to address many of the uncertainties that are common in sedimentary paleomagnetic studies, including signal attenuation in low to moderate resolution archives and difficulty to demonstrate reproducibility in higher resolution archives. The “ultra‐high” accumulation rates of our cores reduce “lock‐in” and smoothing uncertainties associated with magnetic acquisition processes. Abundant radiocarbon dates along with an objective alignment algorithm provide a test of signal reproducibility at sub‐millennial timescales. The paleomagnetic secular variation (PSV) signal, evaluated as individual records and as a new stack (GREENICE15k), validates prior results, but provides stronger geochronological constraints, demonstrates a reproducible PSV signal and amplitude, and extends through the abrupt Bølling–Allerød and Younger Dryas climate transitions of the latest Pleistocene. While broadly consistent with time‐varying spherical harmonic models and varve dated records from Northern Europe, we demonstrate greater variance and higher amplitudes—particularly at sub‐millennial timescales. This robust variability on centennial timescales is rarely observed or discussed, but is likely important to our understanding of some of the most intriguing aspects of the geodynamo.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3