Affiliation:
1. Faculty of Civil Engineering and Geodesy Military University of Technology Warsaw Poland
2. Institute of Geodesy and Geoinformation University of Bonn Bonn Germany
Abstract
AbstractWe propose a novel approach to classify sets of Global Navigation Satellite System (GNSS) permanent stations as benchmarks for hydrogeodesy. Benchmarks are trusted sets of GNSS stations whose displacements are classified as significantly and positively correlated with hydrospheric changes and identified in a three temporal‐scales: short‐term, seasonal and long‐term. We use 63 vertical displacement time series processed at the Nevada Geodetic Laboratory for the period 1998–2021 from stations located within Amazon basin and show that estimates of trends and annual signals, including the annual phase maximum, are very coherent with water surface levels provided by altimetry missions. We compute vertical displacements from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On gravity missions and predict those also from Global Land Water Storage (GLWS) v2.0 data set which values are produced by assimilation of GRACE into WaterGAP Global Hydrological Model (WGHM). We divide vertical displacements from the three data sets into the pre‐defined temporal‐scales of short‐term, seasonal and long‐term, using non‐parametric wavelet analysis. For each temporal‐scale, correlation coefficients are computed between GNSS‐measured and GRACE‐derived/GLWS‐predicted displacements. We present the benefits of applying high‐resolution GRACE‐assimilating hydrology model to benchmark GNSS stations, which are particularly evident when using spherical harmonic coefficients higher than 120. Their increase causes the number of stations included in the benchmarks to rise by up to 15% for short‐term. Benchmarking allows hydrogeodesy to take advantage of a broader set of GNSS stations that were previously omitted, such as earthquake‐affected sites and those where a possible poroelastic response is observed.
Funder
Deutsche Forschungsgemeinschaft
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献