Pore Pressure Drop During Dynamic Rupture and Conditions for Dilatancy Hardening

Author:

Parez S.12ORCID,Kozakovic M.2ORCID,Havlica J.12ORCID

Affiliation:

1. Institute of Chemical Process Fundamentals, Czech Academy of Sciences Prague Czech Republic

2. Faculty of Science Jan Evangelista Purkyně University in Ústí nad Labem Ústí nad Labem Czech Republic

Abstract

AbstractPore pressure drop brought about by fault dilatancy during accelerating slip may suppress nucleation of earthquakes. Yet, direct measurements of pore pressure during dynamic slip are challenging to produce. We present results of a physics‐based model simulating onset of slip in saturated granular layers coupled to a constant fluid pressure reservoir. Grain rearrangements required for slip to commence induce incipient rapid dilatation during which the maximum pore pressure drop is generated. We find that up to a critical slip rate the pore pressure drop is consistent with a prediction derived for an incompressible fluid flow. In this “drained” regime, excess pore pressure is efficiently relaxed and has little effect on slip stability. Above the critical slip rate, marking the onset of undrained conditions, the pore pressure drop decays slowly, inhibits dilatation rate, and significantly increases strength of the layer, stabilizing the rupture growth. The magnitude of the pore pressure drop increases monotonically with the drainage number given as the ratio of the dilatation rate to a characteristic fluid infiltration rate. The pore pressure drop in the undrained regime also depends on a second non‐dimensional parameter, , where β is storage capacity, and is the effective normal stress. Low values of this parameter enhance localization of strain near the drained boundaries of the layer, promoting fluid flow into the layer. Our results can be used to better constrain drainage conditions associated with changes in slip rate, the magnitude of the generated pore pressure and the corresponding fault strengthening.

Funder

Grantová Agentura České Republiky

Univerzite Jan Evangelista Purkyne v Ústí nad Labem

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3