Accretion Cycles, Structural Evolution, and Thrust Activity in Accretionary Wedges With Various Décollement Configurations: Insights From Sandbox Analog Modeling

Author:

Noda Atsushi12ORCID,Graveleau Fabien2ORCID,Witt Cesar2,Chanier Frank2ORCID,Vendeville Bruno2

Affiliation:

1. Geological Survey of Japan National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan

2. Laboratory of Oceanology and Geosciences (LOG) University of Lille CNRS ULCO IRD UMR 8187 Lille France

Abstract

AbstractThe architecture (geometry, fault network, and stacking pattern of accreted thrust sheets) of accretionary wedges influences subduction zone processes. However, it remains challenging to constrain the architectural evolution in natural accretionary wedges over geological timescales. In this study, we undertook sandbox analog modeling, with quantitative analysis of the wedge geometry and digital image correlation‐based kinematics, to delineate the wedge growth history with four décollement settings (single or double and continuous or discontinuous). The results show that the wedge is formed by repeated episodic frontal accretion with a constant cycle (i.e., the accretion cycle), and the degree of coupling between the base of the wedge and subducting plate interface appears to depend on the relative strengths of the wedge and detachment. An interbedded décollement layer in the incoming sediment facilitated wedge segmentation and rearrangement of the internal fault network, which weakened the wedge strength. A combination of a detachable high‐friction patch in the basal décollement and a continuous interbedded weak layer enabled underplating of underthrusted sediment beneath the inner wedge, which involved a low‐angle, long‐lived forethrust and multiple cycles of frontal accretion on short‐lived forethrusts at the deformation front. Our findings suggest that décollement configuration is a key factor in controlling the accretion cycle, strain distribution, fault network, and wedge strength on timescales of ∼105 yr in natural accretionary systems. This result should be considered when investigating modern subduction zones.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3