Hypocenter‐Based 3D Imaging of Active Faults: Method and Applications in the Southwestern Swiss Alps

Author:

Truttmann Sandro1ORCID,Diehl Tobias2ORCID,Herwegh Marco1ORCID

Affiliation:

1. Institute of Geological Sciences University of Bern Bern Switzerland

2. Swiss Seismological Service ETH Zürich Zürich Switzerland

Abstract

AbstractDespite the fact that earthquake occurrence can be strongly influenced by the architecture of pre‐existing faults, it remains challenging to obtain information about the detailed subsurface geometries of active fault systems. Current geophysical methods for studying such systems often fail to resolve geometrical complexities at sufficiently high spatial resolutions. In this work, we present a novel method for imaging the detailed 3D architectures of seismically active faults based on high‐precision hypocenter catalogs, using nearest neighbor learning and principal component analysis. The proposed approach enables to assess variations in fault instabilities and kinematics. We apply the method to the relatively relocated St. Léonard (max.ML = 3.2) and Anzère (max.ML = 3.3) microearthquake sequences in the Southwestern Swiss Alps, revealing strike‐slip fault systems with interconnecting stepovers at depths of 3–7 km and lengths ranging from 0.5 to 2 km. In combination with additional information about fault instabilities and kinematics, we observe significantly reduced earthquake migration velocities and fault locking processes within the stepovers. Understanding such processes and their role in the propagation of strain across stepovers is of great relevance, as these structures can potentially limit earthquake ruptures but also represent possible locations for the nucleation of larger ruptures. Our proposed method is expected to be broadly useful for further applications such as monitoring hydraulic fracture stimulations or geothermal exploration of natural, fluid‐bearing faults. Conducting similar high‐resolution spatiotemporal analyses of microseismic sequences has the potential to greatly enhance our comprehension of how the 3D fault architecture impacts seismogenic fault reactivation.

Funder

Federal Office of Topography swisstopo

Nationale Genossenschaft für die Lagerung radioaktiver Abfälle

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3