Homogenization of Porous Thin Layers With Internal Stratification for the Estimation of Seismic Reflection Coefficients

Author:

Sotelo Edith1ORCID,Barbosa Nicolás D.1ORCID,Solazzi Santiago G.1ORCID,Rubino J. Germán2ORCID,Favino Marco1,Holliger Klaus1ORCID

Affiliation:

1. Institute of Earth Sciences University of Lausanne Lausanne Switzerland

2. CONICET Centro Atómico Bariloche ‐ CNEA San Carlos de Bariloche Argentina

Abstract

AbstractStratified thin layers often present a prominent mechanical contrast with regard to the embedding background and, hence, are important targets for seismic reflection studies. An efficient way to study the reflectivity response of these thin layers is to employ their homogenized viscoelastic equivalents. We aim to homogenize a simple, yet realistic, thin‐layer model, which is composed of a finite non‐periodic sequence of homogeneous porous strata embedded in a background deemed impermeable at the seismic frequencies. The overarching objective is to reproduce the reflectivity response of such stratified thin layers. However, the estimation of the equivalent moduli is inherently affected by the boundary conditions (BC) associated with the embedding background. Therefore, classical homogenization procedures, which assume the existence of a periodic structure, are not readily applicable. We, therefore, propose a novel homogenization procedure that incorporates naturally the appropriate BC. To this end, we consider a sample that includes both a part of the background and a section of the thin layer, to which we apply classical oscillatory relaxation tests. However, we estimate the average of stress and strain components only over the thin layer section of interest. To test the accuracy of the method, we consider a sandstone composed of two strata saturated with different fluids embedded in impermeable half‐spaces. After estimating the corresponding equivalent moduli, we compare the resulting P‐wave reflectivities with those obtained using the original model. Our results show that the inferred viscoelastic equivalent closely reproduces the reflectivities of the stratified thin layer in the seismic frequency range.

Funder

Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3