Banding in the Margins of Basaltic Dykes Indicates Pulsatory Propagation During Emplacement

Author:

Allgood C.1ORCID,Llewellin E. W.1ORCID,Humphreys M. C. S.1,Mathias S. A.2,Brown R. J.1,Vye‐Brown C.3

Affiliation:

1. Department of Earth Sciences Durham University Durham UK

2. Department of Engineering Durham University Durham UK

3. British Geological Survey Edinburgh UK

Abstract

AbstractBasaltic fissure eruptions, which are the most common type of eruption on Earth, are fed by dykes which mediate magma transport through the crust. Dyke propagation processes are important because they determine the geometry of the transport pathway and the nature of any geophysical signals associated with magma ascent. Here, we investigate small‐scale (mm–cm wide) banding features at the margins of dykes in the Teno Massif (Tenerife, Spain) and the Columbia River Basalt Province (CRBP) (USA). Similar marginal bands have been reported for dykes in numerous localities around the world. Dyke margins record valuable information about propagation because they are the first material to solidify against the host rock at the propagating dyke tip. We find that the marginal bands are defined by cyclic variations in phenocryst concentration and vesicularity, and we infer that these cyclic variations in texture are a product of cyclic variations in magma flow rates and pressures within the dyke tip. This indicates that dyke emplacement occurs in pulses, with propagation repeatedly hindered by the rapid cooling and solidification of magma in the narrow dyke tip. Using a 1D conduction model, we estimate the time taken for each band to cool and solidify, which provides a timescale of several minutes to tens of minutes for the pulses. The occurrence of similar bands in various volcanic settings suggests that pulsatory propagation is a common, if not ubiquitous, process associated with dyke emplacement.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3