Quantitative Analysis of Paleomagnetic Sampling Strategies

Author:

Sapienza F.1ORCID,Gallo L. C.2ORCID,Zhang Y.3ORCID,Vaes B.4ORCID,Domeier M.2ORCID,Swanson‐Hysell N. L.3ORCID

Affiliation:

1. Department of Statistics University of California Berkeley CA USA

2. Centre for Planetary Habitability University of Oslo Oslo Norway

3. Department of Earth and Planetary Science University of California Berkeley CA USA

4. Department of Earth Sciences Utrecht University Utrecht The Netherlands

Abstract

AbstractSampling strategies used in paleomagnetic studies play a crucial role in dictating the accuracy of our estimates of properties of the ancient geomagnetic field. However, there has been little quantitative analysis of optimal paleomagnetic sampling strategies and the community has instead defaulted to traditional practices that vary between laboratories. In this paper, we quantitatively evaluate the accuracy of alternative paleomagnetic sampling strategies through numerical experiments and an associated analytical framework. Our findings demonstrate a strong correspondence between the accuracy of an estimated paleopole position and the number of sites or independent readings of the time‐varying paleomagnetic field, whereas larger numbers of in‐site samples have a dwindling effect. This remains true even when a large proportion of the sample directions are spurious. This approach can be readily achieved in sedimentary sequences by distributing samples stratigraphically, considering each sample as an individual site. However, where the number of potential independent sites is inherently limited the collection of additional in‐site samples can improve the accuracy of the paleopole estimate (although with diminishing returns with increasing samples per site). Where an estimate of the magnitude of paleosecular variation is sought, multiple in‐site samples should be taken, but the optimal number is dependent on the expected fraction of outliers. The use of filters based on angular distance helps the accuracy of paleopole estimation, but leads to inaccurate estimates of paleosecular variation. We provide both analytical formulas and a series of interactive Jupyter notebooks allowing optimal sampling strategies to be developed from user‐informed expectations.

Funder

National Science Foundation

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3