Stabilizing Effect of High Pore Fluid Pressure on Fault Growth During Drained Deformation

Author:

Zega Zachary1ORCID,Zhu Wenlu1ORCID

Affiliation:

1. Department of Geology University of Maryland College Park MD USA

Abstract

AbstractDilatant hardening is an accepted model for the stabilizing effect of high pore fluid pressure on fault slip and operates when deformation is undrained. To test whether high pore fluid pressure impedes fault propagation under drained conditions, we deformed highly permeable Darley Dale sandstone using strain rates of 10−4 s−1, 10−5 s−1, and 10−6 s−1, respectively. For each strain rate, we compared the inelastic behaviors and faulting styles among rocks deformed under different pore fluid pressures (Pf) (2–180 MPa). The confining pressure (Pc) was attuned to the pore fluid pressure throughout deformation to maintain a constant differential pressure (Pc − Pf) of 10 MPa. In samples deformed at 10−4 s−1 and 10−5 s−1, faulting behaviors were similar regardless of the magnitude of pore fluid pressure. However, when the strain rate was lowered to 10−6 s−1, we observed prolonged stress drops and slower slip velocities in samples deformed under high pore fluid pressures. In samples deformed at 10−6 s−1, we demonstrate that chemically assisted subcritical crack growth played an important role during faulting. A quantitative microstructural analysis revealed that slow faulting at slow strain rates was accompanied by pervasive microcracking and diffuse shear bands, which suggests pervasive subcritical cracking enabled slow faulting under drained conditions at the sample length scale. High pore fluid pressure may have facilitated slow faulting chemically by increasing the rate of subcritical cracking, mechanically via localized dilatant hardening, or both. Our results provide insight into the mechanics of faulting in natural settings where subcritical cracking is prevalent.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3