Advanced 3D TH and THM Modeling to Shed Light on Thermal Convection in Fault Zones With Varying Thicknesses

Author:

Duwiquet H.1,Genter A.2,Guillou‐Frottier L.34ORCID,Donzé F. V.5,Ledru P.6,Magri F.78ORCID,Guillon T.3,Horne R. N.9ORCID,Arbaret L.4ORCID,Souque C.1

Affiliation:

1. Geothermal Division ENGIE Solutions, ENGIE Paris la Défense France

2. ES‐Géothermie Strasbourg France

3. Georesources Division BRGM Orléans France

4. ISTO, UMR 7327 Université d'Orléans CNRS BRGM Orléans France

5. Université Grenoble Alpes Université Savoie Mont Blanc CNRS IRD IFSTTAR Grenoble France

6. Université Lorraine UMR 7359 GeoRessources Vandœuvre les Nancy France

7. Division Research/International BASE The Federal Office for the Safety of Nuclear Waste Management Berlin Germany

8. Institute of Geological Sciences Hydrogeology Group Freie Universität Berlin Berlin Germany

9. Department of Energy Resources Engineering Stanford University Stanford CA USA

Abstract

AbstractFault zones exhibit 3D variable thickness, a feature that remains inadequately explored, particularly with regard to the impact on fluid flow. Upon analyzing an analytic solution, we examine 3D thermal‐hydraulic (TH) dynamical models through a benchmark experiment, which incorporates a fault zone with thickness variations corresponding to realistic orders of magnitude. The findings emphasize an area of interest where vigorous convection drives fluid flow, resulting in a temperature increase to 150°C at a shallow depth of 2.7 km in the thickest sections of the fault zone. Moreover, by considering various tectonic regimes (compressional, extensional, and strike‐slip) within 3D thermal‐hydraulic‐mechanical (THM) models and comparing them to the benchmark experiment, we observe variations in fluid pressure induced by poroelastic forces acting on fluid flow within the area of interest. These tectonic‐induced pressure changes influence the thermal distribution of the region and the intensity of temperature anomalies. Outcomes of this study emphasize the impact of poroelasticity‐driven forces on transfer processes and highlight the importance of addressing fault geometry as a crucial parameter in future investigations of fluid flow in fractured systems. Such research has relevant applications in geothermal energy, CO2 storage, and mineral deposits.

Funder

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3