A Reciprocity‐Based Efficient Method for Improved Source Parameter Estimation of Submarine Earthquakes With Hybrid 3‐D Teleseismic Green's Functions

Author:

Zang Chong12ORCID,Wu Wenbo3ORCID,Ni Sidao4ORCID,Xu Min15ORCID

Affiliation:

1. Key Laboratory of Ocean and Marginal Sea Geology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China

2. School of Earth and Space Sciences University of Science and Technology of China Hefei China

3. Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA

4. State Key Laboratory of Geodesy and Earth's Dynamics Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan China

5. China‐Pakistan Joint Research Center on Earth Sciences, CAS‐HEC Islamabad Pakistan

Abstract

AbstractAccurate source parameters of global submarine earthquakes are essential for understanding earthquake mechanics and tectonic dynamics. Previous studies have demonstrated that teleseismic P coda waveform complexities due to near‐source 3‐D structures are highly sensitive to source parameters of marine earthquakes. Leveraging these sensitivities, we can improve the accuracy of source parameter inversion compared to traditional 1‐D methods. However, modeling these intricate 3‐D effects poses significant computational challenges. To address this issue, we propose a novel reciprocity‐based hybrid method for computing 3‐D teleseismic Green's functions. Based on this method, we develop a grid‐search inversion workflow for determining reliable source parameters of moderate‐sized submarine earthquakes. The method is tested and proven on five Mw5+ earthquakes at the Blanco oceanic transform fault (OTF) with ground truth locations resolved by a local ocean bottom seismometer array, using ambient noise correlation and surface‐wave relocation techniques. Our results show that fitting P coda waveforms through 3‐D Green's functions can effectively improve the source location accuracy, especially for the centroid depth. Our improved centroid depths indicate that all the five Mw5+ earthquakes on the Blanco transform fault ruptured mainly above the depth of 600°C isotherm predicted by the half‐space cooling model. This finding aligns with the hypothesis that the rupture zone of large earthquakes at OTFs is confined by the 600°C isotherm. However, it is noted that the Blanco transform fault serves as a case study. Our 3‐D source inversion method offers a promising tool for systematically investigating global oceanic earthquakes using teleseismic waves.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3