Global Cooling‐Driven Summer Monsoon Weakening in South China Across the Eocene‐Oligocene Transition

Author:

Jiao Wenjun1ORCID,Wan Shiming12ORCID,Li Yong‐Xiang3ORCID,Zhao Debo1ORCID,Liu Chang4ORCID,Jin Hualong1ORCID,Li Mengjun1,Yu Zhaojie1ORCID,Zhang Jin1,Pei Wenqiang1,Li Anchun1ORCID

Affiliation:

1. Key Laboratory of Marine Geology and Environment Institute of Oceanology Chinese Academy of Sciences Qingdao China

2. Laboratory for Marine Geology Qingdao National Laboratory for Marine Science and Technology Qingdao China

3. State Key Laboratory for Mineral Deposits Research School of Earth Sciences and Engineering Institute of Geophysics and Geodynamics Nanjing University Nanjing China

4. International Ocean Discovery Program Texas A&M University College Station TX USA

Abstract

AbstractRecent research has suggested that East Asia has experienced a prevailing monsoon climate since the Eocene. However, there is little knowledge about the development of the East Asian monsoon system before the Miocene, particularly in southern China, due to a lack of well‐dated continuous sediment records. Here, we present new magnetic proxy records from International Ocean Discovery Program Site U1501 in the northern South China Sea. We conducted rock magnetic experiments, made scanning electron microscopy observations and performed diffuse reflectance spectrum analysis on the late Eocene‐early Oligocene core sediments. The magnetic signal of the sediments is dominated by detrital magnetite and titanomagnetite formed during the silicate weathering and erosion processes, which were used to infer the evolution of summer monsoon precipitation in southern China. Our results along with geochemical and clay mineral data from Site U1501 strongly indicate that the East Asian summer monsoon generally weakened across the Eocene‐Oligocene transition. This change was linked to coeval global cooling rather than tectonic processes. Prior to the Eocene‐Oligocene transition, the summer monsoon intensified, likely due to the latest Eocene warming event caused by the enhancement of the Atlantic Meridional Overturning Circulation, which may have preconditioned the Earth system for the greenhouse‐to‐icehouse transition.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3