Affiliation:
1. Department of Geosciences The University of Texas at Dallas Richardson TX USA
2. Department of Physics The University of Texas at Dallas Richardson TX USA
Abstract
AbstractOver the past decade, the seismicity rate in the state of Oklahoma has increased significantly, which has been linked to industrial operations, such as saltwater injection and hydraulic fracturing. Taking advantage of induced earthquakes and recently deployed seismometers, we construct a 3‐D radially anisotropic seismic velocity model for the crust of Oklahoma by using full waveform inversion. To mitigate the well‐known cycle‐skipping problem, we use misfit functions based on phase and waveform differences in several frequency bands. Relative velocity perturbations in the inverted model allow us to delineate major geological provinces in Oklahoma, such as the Anadarko Basin and the Cherokee Platform/Shelf. In addition, radial anisotropy in the inverted model reflects deformation within the crust of Oklahoma, which might correlate with sedimentary layering, microcracks/fractures, as well as dominant orientation of anisotropic minerals. The crystalline basement beneath Oklahoma can be inferred from the new velocity model, which enables us to better classify induced seismicity in current earthquake catalogs. Furthermore, synthetic experiments suggest that the new velocity model enables us to better constrain earthquake locations in Oklahoma, especially for determining their depths, which are important for investigating induced seismicity.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献