Dynamic Rupture Simulations of Caldera Collapse Earthquakes: Effects of Wave Radiation, Magma Viscosity, and Evidence of Complex Nucleation at Kı̄lauea 2018

Author:

Wang Taiyi A.1ORCID,Dunham Eric M.12ORCID,Krenz Lukas3ORCID,Abrahams Lauren S.4ORCID,Segall Paul1ORCID,Yoder Mark R.5

Affiliation:

1. Department of Geophysics Stanford University Stanford CA USA

2. Institute for Computational and Mathematical Engineering Stanford University Stanford CA USA

3. Department of Informatics Technical University of Munich Munich Germany

4. Lawrence Livermore National Laboratory Livermore CA USA

5. Stanford Research Computing Stanford CA USA

Abstract

AbstractAll instrumented basaltic caldera collapses have generated Mw > 5 very long period earthquakes. However, previous studies of source dynamics have been limited to lumped models treating the caldera block as rigid, leaving open questions related to how ruptures initiate and propagate around the ring fault, and the seismic expressions of those dynamics. We present the first 3D numerical model capturing the nucleation and propagation of ring fault rupture, the mechanical coupling to the underlying viscoelastic magma, and the associated seismic wavefield. We demonstrate that seismic radiation, neglected in previous models, acts as a damping mechanism reducing coseismic slip by up to half, with effects most pronounced for large magma chamber volume/ring fault radius or highly compliant crust/compressible magma. Viscosity of basaltic magma has negligible effect on collapse dynamics. In contrast, viscosity of silicic magma significantly reduces ring fault slip. We use the model to simulate the 2018 Kı̄lauea caldera collapse. Three stages of collapse, characterized by ring fault rupture initiation and propagation, deceleration of the downward‐moving caldera block and magma column, and post‐collapse resonant oscillations, in addition to chamber pressurization, are identified in simulated and observed (unfiltered) near‐field seismograms. A detailed comparison of simulated and observed displacement waveforms corresponding to collapse earthquakes with hypocenters at various azimuths of the ring fault reveals a complex nucleation phase for earthquakes initiated on the northwest. Our numerical simulation framework will enhance future efforts to reconcile seismic and geodetic observations of caldera collapse with conceptual models of ring fault and magma chamber dynamics.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3