Exceptionally Low Thermal Conduction of Basaltic Glasses and Implications for the Thermo‐Chemical Evolution of the Earth's Primitive Magma Ocean

Author:

Hsieh Wen‐Pin12ORCID,Chang Yun‐Yuan1ORCID,Tsao Yi‐Chi1,Lin Chun‐Hung1,Vilella Kenny1ORCID

Affiliation:

1. Institute of Earth Sciences Academia Sinica Taipei Taiwan

2. Department of Geosciences National Taiwan University Taipei Taiwan

Abstract

AbstractThe thermal properties of the Earth's primordial magma are the key factors that constrained crystallization and other thermo‐chemical processes in Earth's primitive magma ocean and therefore controlled the Earth's long‐term evolution. Thermal conductivity of the primordial magma is conventionally assumed to be a constant of about 4 W m−1 K−1 under the high pressure‐temperature conditions of the primitive magma ocean. Here we measured the lattice thermal conductivity of a variety of basaltic and silicate glasses at high pressures and a wide range of temperatures. Our results suggest that the primordial magma, if it is indeed represented by basaltic melts, had a thermal conductivity of ∼1.0–1.9 W m−1 K−1, much lower than previously thought. Such low thermal conduction reduced heat loss and thus prolonged the cooling time of the early magma ocean, promoting convection in the solidifying mantle and preventing a global overturn. Moreover, if the seismic ultralow velocity zones presently observed in the lowermost mantle are made of basaltic melts, originating either from remnants of the primitive magma ocean or pieces of subducted crust, the material in these zones must have an ultralow thermal conductivity, which would reduce cooling and thus influence the thermo‐chemical evolution of the present day core‐mantle boundary.

Funder

Academia Sinica

National Science and Technology Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3