A Continental Model of Curie Point Depth for China and Surroundings Based on Equivalent Source Method

Author:

Lei Yu12,Jiao Liguo1ORCID,Huang Qinghua23ORCID,Tu Jiyao1

Affiliation:

1. Institute of Geophysics China Earthquake Administration Beijing China

2. Department of Geophysics School of Earth and Space Sciences Peking University Beijing China

3. Hebei Hongshan National Observatory on Thick Sediments and Seismic Hazards Peking University Beijing China

Abstract

AbstractThe Curie Point Depth (CPD) marks a significant temperature boundary (∼580°C) within the Earth's lithosphere. However, there has been ongoing debate regarding its spatial distribution. In this research, we utilized the Equivalent Source Method (ESM) based on Gauss‐Legendre integration and data obtained from the EMM2017 model, along with a five‐layer susceptibility model, to generate a 0.5° × 0.5° grid of continental CPD distribution for China and surroundings. The average CPD in the study area is 30.4 km, which is slightly shallower than the average depth of global continental Moho (∼33 km). Notably, stable and cold cratonic basins, such as the Tarim Basin and the Sichuan Basin, exhibit deep CPD of ∼45 km. In contrast, the North China Craton, which has experienced significant tectono‐thermal activity since the Late Mesozoic, shows moderate CPD of ∼30 km and a gradual uplift from west to east. The Tuva‐Mongol orocline within the Central Asian Orogenic Belt, the Deccan Volcanic Province in the Indian subcontinent and the Eastern Yangtze Craton have shallow CPD of ∼20 km. We estimate the surface heat flow by CPD, and the result is consistent with measurements within a RMSE of 18.1 mW/m2. When comparing the CPD with Moho, we find that the CPD may lie below Moho in stable and cold cratonic areas. In comparison to two recent global CPD models, our regional model demonstrates better alignment with tectonic features.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3