Interplay Between Seismic and Aseismic Deformation on the Central Range Fault During the 2013 Mw 6.3 Ruisui Earthquake (Taiwan)

Author:

Lin Hsiao‐Fan1ORCID,Gualandi Adriano23ORCID,Hsu Yu‐Fang4,Hsu Ya‐Ju1ORCID,Huang Hsin‐Hua1ORCID,Lee Hsin‐Ming1,Canitano Alexandre1ORCID

Affiliation:

1. Institute of Earth Sciences Academia Sinica Taipei Taiwan

2. Department of Earth Sciences Bullard Laboratories Cambridge UK

3. Istituto Nazionale di Geofisica e Vulcanologia Osservatorio Nazionale Terremoti Roma Italy

4. Department of Earth Sciences University of Southern California Los Angeles CA USA

Abstract

AbstractThe 2013 Ruisui earthquake represents the first unequivocal evidence of the activity of the Central Range fault (CRF) in central Longitudinal Valley, Taiwan. Using a joint Bayesian finite‐fault source inversion of Global Navigation Satellite System and strain time series, we infer that coseismic rupture occurred between 4 and 19 km depth with maximum slip of 0.5 m located near the hypocenter. We then apply a variational Bayesian independent component analysis approach to displacement signals to infer a 3‐months long afterslip located in the near‐source region. This observation represents the first evidence of aseismic slip on the CRF. Combining geodetic and seismological analysis with simulations based on rate‐and‐state friction mechanics, we analyze the interplay between seismic and aseismic deformation during the earthquake sequence. We observe that afterslip is the dominant postseismic deformation mechanism, with >95% of the moment being released aseismically in the postseismic phase and also likely represents the driving force controlling aftershock productivity. Finally, we infer the presence of a shallow velocity strengthening zone (∼0–4 km depth) associated with spatially heterogeneous slip during the postseismic phase with maximum slip of 0.18 m located above the zone of maximum coseismic deformation.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3