The Global Spectrum of Seafloor Morphology on Mid‐Ocean Ridge Flanks Related to Magma Supply

Author:

Tucholke Brian E.1ORCID,Parnell‐Turner Ross2ORCID,Smith Deborah K.1ORCID

Affiliation:

1. Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA

2. Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography La Jolla CA USA

Abstract

AbstractMagma supply likely exerts primary control on seafloor morphology of oceanic crust, but most studies have related morphology to spreading rate. Here we examine global patterns of morphology on mid‐ocean ridge (MOR) flanks in relation to magma supply derived from residual mantle Bouguer gravity anomaly (proxy for relative crustal thickness) and spreading rate. We use multibeam bathymetry to characterize morphology using both qualitative (descriptive) and quantitative approaches, and we compare results to both magma supply and spreading rate. Morphology becomes more isotropic and abyssal hills are more irregular and discontinuous as magma supply decreases, while roughness, area of steeper slopes, and anomalous fabric orientation increase. We interpret these changes to reflect changing magma distribution along‐axis, from large‐volume and spatially extensive to progressively reduced, increasingly localized, and more irregularly emplaced. Observed relations between crustal thickness and morphology imply that average thickness of purely magmatic crust in the Atlantic and parts of the Indian ridge system is significantly less than average seismically determined crust. Thus seismically defined crustal thickness in those regions likely includes significant non‐magmatic components such as serpentinized mantle. Excepting regions of extensive mantle exposure, most morphologic parameters that we examined are sensitive to estimated magma supply but not necessarily to spreading rate alone. We summarize our results in schematic models that relate morphologic variations to changes in magma supply and mantle serpentinization throughout the global MOR system. Finally, we note that combined qualitative and quantitative results of our study may be useful for developing automated morphologic classification schemes.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3