Earthquake Early Warning Starting From 3 s of Records on a Single Station With Machine Learning

Author:

Lara Pablo12ORCID,Bletery Quentin1ORCID,Ampuero Jean‐Paul1ORCID,Inza Adolfo2ORCID,Tavera Hernando2ORCID

Affiliation:

1. Université Côte d’Azur IRD CNRS Observatoire de la Côte d’Azur Géoazur Valbonne France

2. Instituto Geofísico del Perú Lima Perú

Abstract

AbstractWe introduce the Ensemble Earthquake Early Warning System (E3WS), a set of Machine Learning (ML) algorithms designed to detect, locate, and estimate the magnitude of an earthquake starting from 3 s of P‐waves recorded by a single station. The system is made of six Ensemble ML algorithms trained on attributes computed from ground acceleration time series in the temporal, spectral, and cepstral domains. The training set comprises data sets from Peru, Chile, Japan, and the STEAD global data set. E3WS consists of three sequential stages: detection, P‐phase picking, and source characterization. The latter involves magnitude, epicentral distance, depth, and back azimuth estimation. E3WS achieves an overall success rate in the discrimination between earthquakes and noise of 99.9%, with no false positive (noise mis‐classified as earthquakes) and very few false negatives (earthquakes mis‐classified as noise). All false negatives correspond to M ≤ 4.3 earthquakes, which are unlikely to cause any damage. For P‐phase picking, the Mean Absolute Error is 0.14 s, small enough for earthquake early warning purposes. For source characterization, the E3WS estimates are virtually unbiased, have better accuracy for magnitude estimation than existing single‐station algorithms, and slightly better accuracy for earthquake location. By updating estimates every second, the approach gives time‐dependent magnitude estimates that follow the earthquake source time function. E3WS gives faster estimates than present alert systems relying on multiple stations, providing additional valuable seconds for potential protective actions.

Funder

Institut de Recherche pour le Développement

European Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3