The Mantle Transition Zone Structure Beneath the Pamir Plateau and Western Tian Shan and Adjacent Regions

Author:

Wu Yingkai1ORCID,Bao Xuewei1ORCID

Affiliation:

1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province School of Earth Sciences Zhejiang University Hangzhou China

Abstract

AbstractSystematical investigation of deep mantle structure beneath the Pamir Plateau, western Tian Shan and their surroundings is of great significance to understand dynamics of continental collision, intracontinental orogenesis and deformation in response to the Indo‐Eurasian collision. In this research, we imaged the mantle transition zone (MTZ) structure beneath these regions using 42,560 P‐wave receiver functions obtained from 352 seismic stations and 6,173 teleseismic events. Our results reveal significant 15–20 km depression of the 410‐km discontinuity (d410) mainly beneath the southern Kazakh Shield, which is consistent with the low‐velocity anomaly in tomographic models and thus attributed to the mantle upwelling from the MTZ, providing evidence for the fossil Tian Shan plume responsible for the Late Cretaceous‐Paleocene basaltic magmatism (74–52 Ma) at the western Tian Shan. Considering that the d410 is slightly depressed by ∼8 km beneath the western Tian Shan, deep subduction of the Tarim lithosphere is likely excluded and its subhorizontal indentation into the Tian Shan is preferred. As a result, segments of thickened Tian Shan lithosphere delaminated and accumulated near the 660‐km discontinuity (d660), which induce small‐scale upwelling across the d410 there. The d410 is depressed by ∼10–15 km beneath Tarim, which is interpreted to be caused by the mantle upwelling originating from beneath the d410. The d660 below the central Hindu Kush is extremely depressed by 25–30 km, providing direct evidence for the deep subduction of Indian lithosphere into the bottom of the MTZ and suggesting different mechanisms for continental collision between the Hindu Kush and Pamir Plateau.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3