The Crustal Magmatic Structure Beneath the Denali Volcanic Gap Imaged by a Dense Linear Seismic Array

Author:

Rabade Santiago1ORCID,Lin Fan‐Chi1ORCID,Tape Carl2ORCID,Ward Kevin M.3ORCID,Waldien Trevor3ORCID,Allam Amir1ORCID

Affiliation:

1. Department of Geology and Geophysics University of Utah Salt Lake City UT USA

2. Geophysical Institute and Department of Geosciences University of Alaska Fairbanks AK USA

3. Department of Geology and Geological Engineering South Dakota School of Mines & Technology Rapid City SD USA

Abstract

AbstractThe crustal structure in south‐central Alaska has been influenced by terrane accretion, flat slab subduction, and a modern strike‐slip fault system. Within the active subduction system, the presence of the Denali Volcanic Gap (DVG), a ∼400 km region separating the active volcanism of the Aleutian Arc to the west and the Wrangell volcanoes to the east, remains enigmatic. To better understand the regional tectonics and the nature of the volcanic gap, we deployed a month‐long north‐south linear geophone array of 306 stations with an interstation distance of 1 km across the Alaska Range. By calculating multi‐component noise cross‐correlation and jointly inverting Rayleigh wave phase velocity and ellipticity across the array, we construct a 2‐D shear wave velocity model along the transect down to ∼16 km depth. In the shallow crust, we observe low‐velocity structures associated with sedimentary basins and image the Denali fault as a narrow localized low‐velocity anomaly extending to at least 12 km depth. About 12 km, below the fold and thrust fault system in the northern flank of the Alaska Range, we observe a prominent low‐velocity zone with more than 15% velocity reduction. Our velocity model is consistent with known geological features and reveals a previously unknown low‐velocity zone that we interpret as a magmatic feature. Based on this feature's spatial relationship to the Buzzard Creek and Jumbo Dome volcanoes and the location above the subducting Pacific Plate, we interpret the low‐velocity zone as a previously unknown subduction‐related crustal magma reservoir located beneath the DVG.

Funder

Consejo Nacional de Ciencia y Tecnología

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3