Carbon Cycle Response to Stratospheric Aerosol Injection With Multiple Temperature Stabilization Targets and Strategies

Author:

Zhao Mengying1ORCID,Cao Long1ORCID,Visioni Daniele2ORCID,MacMartin Douglas G.3ORCID

Affiliation:

1. Department of Atmospheric Sciences School of Earth Sciences Zhejiang University Hangzhou China

2. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA

3. Sibley School for Mechanical and Aerospace Engineering Cornell University Ithaca NY USA

Abstract

AbstractWe analyze the global carbon cycle response to a set of stratospheric aerosol injection (SAI) simulations performed by the CESM2(WACCM6‐MA) model. The simulations are performed under the specified SSP2‐4.5 CO2 concentration pathway. It is found that both the temperature stabilization target and the SO2 injection strategy have important effects on the global carbon sink. Relative to the SSP2‐4.5 scenario, averaged over the last 20 years of our simulations (year 2050–2069), simultaneous multi‐location SO2 injection causes an increase in cumulative land carbon uptake of 45 and 23 PgC, and an increase in cumulative ocean carbon uptake of 6 and 2 PgC for temperature stabilization targets of 0.5°C and 1.5°C respectively. For a temperature stabilization target of 1.0°C, SO2 injections increase land and ocean carbon sinks by 22–42 PgC and 4–7 PgC, respectively, depending on the strategies of SO2 injections (low latitude, mid‐to‐high latitude, and multi‐objective injection). Relative to SSP2‐4.5, by year 2069, SAI increases diagnosed cumulative CO2 emissions by 25–53 PgC (3%–6%), implying a decrease in atmospheric CO2 if SO2 injections were performed under a prescribed CO2 emission pathway. Stratospheric SO2 injections slow permafrost thaw, but do not restore permafrost to the previous extent at the same warming level for all injection strategies. An abrupt termination of SO2 injection weakens both the ocean and land carbon sink, and causes a rapid decline of permafrost extent. A gradual phaseout of SO2 injection slows sharp decline of permafrost and delays the rebound of carbon sink.

Funder

National Natural Science Foundation of China

Cornell Atkinson Center for Sustainability, Cornell University

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3