Diversity of New Martian Crater Clusters Informs Meteoroid Atmospheric Interactions

Author:

Neidhart T.1ORCID,Sansom E. K.1ORCID,Miljković K.1ORCID,Collins G. S.2ORCID,Eschenfelder J.2ORCID,Daubar I. J.3ORCID

Affiliation:

1. School of Earth and Planetary Sciences Space Science and Technology Centre Curtin University Perth WA Australia

2. Department of Earth Science and Engineering Imperial College London UK

3. Earth, Environmental and Planetary Sciences Brown University Providence RI USA

Abstract

AbstractWe investigated 634 crater clusters on Mars detected between 2007 and 2021, which represent more than half of all impacts discovered in this period. Crater clusters form when meteoroids in the 10 kg–10 ton mass range break up in Mars' atmosphere to produce a few to a few hundred fragments that hit the ground. The properties of the clusters can inform our understanding of meteoroid properties and the processes that govern their fragmentation. We mapped individual craters >1 m within each cluster and defined a range of cluster properties based on the spatial and size distributions of the craters. The large data set, with over eight times more cluster observations than previous work, provides a more robust statistical investigation of crater cluster parameters and their correlations. Trends in size, dispersion, and large crater fraction with elevation support weak atmospheric filtering of material. The diversity in the number of individual craters within a cluster, and their size‐frequency distributions, may reflect either a diversity in fragmentation style, fragility, or internal particle sizes.

Funder

UK Space Agency

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two Seismic Events from InSight Confirmed as New Impacts on Mars;The Planetary Science Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3