Affiliation:
1. School of Earth and Planetary Sciences Space Science and Technology Centre Curtin University Perth WA Australia
2. Department of Earth Science and Engineering Imperial College London UK
3. Earth, Environmental and Planetary Sciences Brown University Providence RI USA
Abstract
AbstractWe investigated 634 crater clusters on Mars detected between 2007 and 2021, which represent more than half of all impacts discovered in this period. Crater clusters form when meteoroids in the 10 kg–10 ton mass range break up in Mars' atmosphere to produce a few to a few hundred fragments that hit the ground. The properties of the clusters can inform our understanding of meteoroid properties and the processes that govern their fragmentation. We mapped individual craters >1 m within each cluster and defined a range of cluster properties based on the spatial and size distributions of the craters. The large data set, with over eight times more cluster observations than previous work, provides a more robust statistical investigation of crater cluster parameters and their correlations. Trends in size, dispersion, and large crater fraction with elevation support weak atmospheric filtering of material. The diversity in the number of individual craters within a cluster, and their size‐frequency distributions, may reflect either a diversity in fragmentation style, fragility, or internal particle sizes.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献