Can Archean Impact Structures Be Discovered? A Case Study From Earth's Largest, Most Deeply Eroded Impact Structure

Author:

Huber M. S.1ORCID,Kovaleva E.12ORCID,Rae A. S. P.3ORCID,Tisato N.45ORCID,Gulick S. P. S.456ORCID

Affiliation:

1. Department of Earth Science University of the Western Cape Bellville South Africa

2. Helmholtz Centre Potsdam GFZ Potsdam Germany

3. Department of Earth Sciences University of Cambridge Cambridge UK

4. Department of Geological Sciences Jackson School of Geoscience University of Texas at Austin Austin TX USA

5. Center for Planetary Systems Habitability University of Texas at Austin Austin TX USA

6. Institute for Geophysics Jackson School of Geoscience University of Texas at Austin Austin TX USA

Abstract

AbstractThe record of terrestrial impact events is incomplete with no Archean impact structures discovered, despite the expected abundance of collisions that must have occurred. Because no Archean impact structures have been identified, the necessary conditions to preserve an impact structure longer than 2 Byr are unknown. One significant effect of shock metamorphism is that the physical properties of the target rocks change, resulting in distinctive geophysical signatures of impact structures. To evaluate the preservation potential of impact structures, we evaluate the deeply eroded Proterozoic Vredefort impact structure to examine the changes in physical properties and the remnant of the geophysical signature and compare the results with the well‐preserved Chicxulub impact structure. The major structural features of Vredefort are similar to the expected profile of the Chicxulub structure at a depth of 8–10 km. The Vredefort target rocks, while shocked, do not preserve measurable changes in their physical properties. The gravity signature of the impact structure is minor and is controlled by the remnant of the collapsed transient crater rim and the uplifted Moho surface. We anticipate that erosion of the Vredefort structure by an additional 1 km would remove evidence of impact, and regardless of initial size, erosion by >10 km would result in the removal of most of the evidence for any impact structure from the geological record. This study demonstrates that the identification of geologically old (i.e., Archean) impact structures is limited by a lack of geophysical signatures associated with deeply eroded craters.

Funder

Trinity College, University of Cambridge

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3