Affiliation:
1. School of Earth and Space Exploration Arizona State University Tempe AZ USA
2. Centre for Planetary Sciences University of Toronto Toronto ON Canada
3. Physics Department The University of Texas at Austin Austin TX USA
4. Astrogeology Science Center U.S. Geological Survey Flagstaff AZ USA
Abstract
AbstractAfter its formation, the Moon is widely believed to have possessed a deep, global magma ocean. As it cooled, an anorthositic crust formed, floating atop this magma ocean and acting as an insulating blanket. As well as forming the Moon, the Moon‐forming giant impact also released more than a lunar mass of debris into heliocentric orbit. Reimpacting debris subjected the newly formed Moon to an extremely intense bombardment. We have conducted a suite of impact simulations for a range of conditions representative of this early period. We find that impact outcomes can be divided into four regimes and construct scaling relations for the transitions between these regimes and size of impact features. Exposure of liquid magma to the surface is generally more efficient than previously assumed, implying significant shortening of the solidification time of the Lunar Magma Ocean. Comparison with work on icy satellites also suggests that penetration of a solid crust overlying liquid is a relatively universal process with weak dependence on target material properties.
Funder
Planetary Science Division
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献