Revisiting HF Ground Wave Propagation Losses Over the Ocean: A Comparison of Long‐Term Observations and Models

Author:

Kirincich Anthony1ORCID,Emery Brian2ORCID

Affiliation:

1. Woods Hole Oceanographic Institution Woods Hole MA USA

2. Marine Science Institute University of California Santa Barbara CA USA

Abstract

AbstractUnderstanding variations in the received power levels for land‐based high frequency radar (HFR) systems is critical to advancing radar‐based estimates of winds and waves. We use a long‐term record of one‐way HFR power observations to explore the key factors controlling propagation losses over the ocean. Observed propagation loss was quantified using an 8‐month record of radio frequency power from a shore‐based transmitter, received at two locations: an offshore tower and a nearby island. Observations were compared to environmental factors such as wind speed and air temperature as well as models of path loss incorporating smooth and rough surface impedances and varying atmospheric properties. Significant differences in the observations at the two sites existed. One‐way path loss variations at the tower, a wavelength above mean sea level, were closely related to atmospheric forcing, while variations at the distant island site were dominated by wind‐driven surface gravity wave variability. Seasonal variability in ocean conductivity had no significant effect on over‐ocean path losses. Simplistic analytical models of path loss were found to have more skill than either ground wave propagation models or more complex numerical models of field strength in matching the observations, due in part to under‐observation of the atmosphere but also the differences in rough surface impedance between models of ocean waves.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Electrical and Electronic Engineering,General Earth and Planetary Sciences,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3