Observations of Shelf‐Ocean Exchange in the Northern South Atlantic Bight Driven by the Gulf Stream

Author:

Andres M.1ORCID,Muglia M.2ORCID,Seim H.3,Bane J.3,Savidge D.4

Affiliation:

1. Woods Hole Oceanographic Institution Woods Hole MA USA

2. Coastal Studies Institute East Carolina University Wanchese NC USA

3. University of North Carolina at Chapel Hill Chapel Hill NC USA

4. Skidaway Institute of Oceanography Savannah GA USA

Abstract

AbstractBetween Florida and Cape Hatteras, North Carolina, the Gulf Stream carries warm, salty waters poleward along the continental slope. This strong current abuts the edge of the South Atlantic Bight (SAB) continental shelf and is thought to influence exchange of waters between the open ocean and the shelf. Observations from a pair of instruments deployed for 19 months in the northern SAB are used here to examine the processes by which the Gulf Stream can impact this exchange. The instrument deployed on the SAB shelf edge shows that the time‐averaged along‐slope flow is surface‐intensified with only few flow reversals at low frequencies (>40‐day period). Time‐averaged cross‐slope flow is onto the SAB shelf in a lower layer and off‐shelf above. Consistent with Ekman dynamics, the magnitude of lower‐layer on‐shelf flow is correlated with the along‐slope velocity, which is in turn controlled by the position and/or transport of the Gulf Stream that flows poleward along the SAB continental slope. In the frequency band associated with downstream‐propagating wave‐like meanders of the Gulf Stream jet (2‐15 day period), currents at the shelf‐edge are characterized by surface‐intensified flow in the along‐ and cross‐slope directions. Estimates of maximum upwelling velocities associated with cyclonic frontal eddies between meander crests occasionally reach 100 m/day.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3