Subinertial Sea Surface Heights Anomalies Estimated Using High Frequency Radar Surface Current Data in the Mississippi Bight

Author:

Nwankwo Uchenna1ORCID,Howden Stephan1ORCID,Nechaev Dmitri1,Dzwonkowski Brian2ORCID

Affiliation:

1. School of Ocean Science and Engineering Hydrographic Science Research Center The University of Southern Mississippi Hattiesburg MS USA

2. University of South Alabama Dauphin Island Sea Lab Mobile AL USA

Abstract

AbstractSea level studies in the Mississippi Bight (MSB) are less abundant than in other coastal waters of USA. This study investigates the subinertial (time scales >2 days) sea level anomalies in the MSB shelf. The diagnostics of the terms in the invariant form of the momentum equation were computed to determine which terms have the most influence on the anomalies in sea level. It was determined that at subinertial scales the geostrophic balance is the dominant balance in the MSB while the non‐linear and time derivative terms are insignificant relative to the Coriolis term. A Least Squares procedure was applied to the subinertial surface currents data from high frequency radar surface currents (filtered with a window of 2‐day Butterworth filter) to extract subinertial sea level anomalies in the MSB shelf using both geostrophic balance and the invariant form of Reynolds' averaged momentum equations. The resulting subinertial sea level anomalies were validated using sea level observations from an offshore buoy and Sentinel‐3 along‐track satellite altimeter data. The estimated sea level anomalies were reasonably close to observations (more than half had root mean square difference of <0.04 m) and mostly influenced by geostrophic balance. Analysis of the empirical orthogonal functions showed that the first two modes explained the majority (85%) of the variance in the sea level anomalies estimated using the geostrophic approximation. Absolute sea level could be estimated if Global Navigation Satellite System buoys are deployed in the radar footprint.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Reference53 articles.

1. Bisnath S. Wells D. Santos M. &Cove K.(2004).Initial results from a long baseline kinematic differential GPS carrier phase experiment in a marine environment.26–29.

2. EOF using the Ritz method: Application to superelliptic microchannels

3. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities

4. Bretherton C.(2002).Atmospheric Science 547 boundary layer meteorology.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3