Changes in Nutrient Concentration Resulting From Floods and Their Impact on the Estuary–Sea Continuum

Author:

Zhou Xiangqian1,Ge Jianzhong12ORCID,Wallhead Philip3ORCID,Shi Shenyang4

Affiliation:

1. State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai China

2. Institute of Eco‐Chongming (IEC) Shanghai China

3. Norwegian Institute for Water Research (NIVA) Bergen Norway

4. Project Management Office of China National Scientific Seafloor Observatory Tongji University Shanghai China

Abstract

AbstractEvaluating the contribution of rivers to coastal seas in the Earth system and accurately predicting marine environmental responses to climate change are crucial for mitigating and addressing future natural disasters, especially those related to extreme hydrological events, such as fluvial floods. The Changjiang (Yangtze) River Estuary (CRE) and the East China Sea continuum, known for high environmental stress, complex marine dynamic processes, and frequent flood events, were selected to determine the compound impacts of a severe flood that persisted for the whole of July 2017. We conducted three cruise surveys before and after this flood event. Our surveys revealed that the phosphate concentration in the channel of the CRE declined from 2 to <1 μM during the flood, while the nitrate concentration remained stable. We applied a coupled physical‐biogeochemical model to determine the spatio‐temporal influence of floodwater (freshwater from upstream during flood events). During the initial rising discharge stage, surface phytoplankton blooms triggered by enhanced stratification consumed phosphate and significantly increased the N:P ratio in the sea. The ratio was restored as the blooms diminished, but remained elevated due to lower phosphate floodwater in the northeastward area within the low‐salinity river plume. Model experiments also showed that phytoplankton biomass and N:P ratio in the flood plume region were sensitive to the riverine phosphate concentration inputs during the flood event.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3