Affiliation:
1. Department of Physics University of Otago Dunedin New Zealand
2. Alfred Wegener Institute for Polar and Marine Research Bremerhaven Germany
3. Gateway Antarctica University of Canterbury Christchurch New Zealand
4. School of Surveying University of Otago Dunedin New Zealand
5. Istituto Nazionale di Geofisica e Vulcanologia Roma Italy
Abstract
AbstractWe present a 700 km airborne electromagnetic survey of late‐spring fast ice and sub‐ice platelet layer (SIPL) thickness distributions from McMurdo Sound to Cape Adare, providing a first‐time inventory of fast ice thickness close to its annual maximum. The overall mode of the consolidated ice (including snow) thickness was 1.9 m, less than its mean of 2.6 ± 1.0 m. Our survey was partitioned into level and rough ice, and SIPL thickness was estimated under level ice. Although level ice, with a mode of 2.0 m and mean of 2.0 ± 0.6 m, was prevalent, rough ice occupied 41% of the transect by length, 50% by volume, and had a mode of 3.3 m and mean of 3.2 ± 1.2 m. The thickest 10% of rough ice was almost 6 m on average, inclusive of a 2 km segment thicker than 8 m in Moubray Bay. The thickest ice occurred predominantly along the northwestern Ross Sea, due to compaction against the coast. The adjacent pack ice was thinner (by ∼1 m) than the first‐year fast ice. In Silverfish Bay, offshore Hells Gate Ice Shelf, New Harbor, and Granite Harbor, the SIPL transect volume was a significant fraction (0.30) of the consolidated ice volume. The thickest 10% of SIPLs averaged nearly 3 m thick, and near Hells Gate Ice Shelf the SIPL was almost 10 m thick, implying vigorous heat loss to the ocean (∼90 W m−2). We conclude that polynya‐induced ice deformation and interaction with continental ice influence fast ice thickness in the western Ross Sea.
Funder
Antarctica New Zealand
New Zealand Vice-Chancellors' Committee
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献