Southern Ocean Ice‐Covered Eddy Properties From Satellite Altimetry

Author:

Auger Matthis123ORCID,Sallée Jean‐Baptiste3ORCID,Thompson Andrew F.4ORCID,Pauthenet Etienne35,Prandi Pierre6

Affiliation:

1. Insitute for Marine and Antarctic Studies University of Tasmania Hobart Australia

2. The Australian Centre for Excellence in Antarctic Science University of Tasmania Hobart TAS Australia

3. CNRS LOCEAN Sorbonne Université Paris France

4. Environmental Sciences and Engineering California Institute of Technology Pasadena CA USA

5. Laboratoire d’Océanographie Physique et Spatiale (LOPS) Ifremer CNRS IRD IUEM Université de Brest Plouzané France

6. Collecte Localisation Satellite Toulouse France

Abstract

AbstractWe investigate statistical properties of surface currents as well as coherent mesoscale eddies in the seasonally ice‐covered Southern Ocean. Based on a recent regional Sea Level Anomaly satellite altimetry data set, we compute Eddy Kinetic Energy (EKE) and detect mesoscale eddies. EKE is about one order of magnitude higher in the northern sector of the subpolar basin and over the continental slope, as compared to the middle of the subpolar gyres. An eddy detection methodology reveals that eddies are distributed evenly in the subpolar Southern Ocean, and their amplitude follows the spatial pattern of EKE. In addition to regional circulation variations, sea ice concentration arises as an important driver of eddy properties. Eddies have low amplitude and density in the pack ice, in particular in the middle of the gyres where the background circulation is unfavorable for instabilities. In contrast, the northern part of the Marginal Ice Zone is favorable for mesoscale eddies, especially cyclonic. There, eddies are stronger and their density is higher than in any other region of the ice‐covered or ice‐free subpolar Southern Ocean. This region is expected to be a site of frontogenesis due to sea ice melt and upwelling generated from interactions between the wind and the sea ice. While many mesoscale eddies will fall below detection level due to the small Rossby radius at high latitudes, these results contribute to understanding the interactions between mesoscale eddies, sea ice, and the background circulation in the subpolar region.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3