Affiliation:
1. Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame IN USA
2. Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame IN USA
3. Global Health Institute Duke University Durham NC USA
4. Children's Environmental Health Initiative University of Notre Dame South Bend IN USA
Abstract
AbstractAmbient air pollution is an increasing threat to society, with rising numbers of adverse outcomes and exposure inequalities worldwide. Reducing uncertainty in health outcomes models and exposure disparity studies is therefore essential to develop policies effective in protecting the most affected places and populations. This study uses the concept of information entropy to study tradeoffs in mortality uncertainty reduction from increasing input data of air pollution versus health outcomes. We study a case scenario for short‐term mortality from particulate matter (PM2.5) in North Carolina for 2001–2016, employing a case‐crossover design with inputs from an individual‐level mortality data set and high‐resolution gridded data sets of PM2.5 and weather covariates. We find a significant association between mortality and PM2.5, and the information tradeoffs indicate that a 10% increase in mortality information reduces model uncertainty three times more than increased resolution of the air pollution model from 12 to 1 km. We also find that Non‐Hispanic Black (NHB) residents tend to live in relatively more polluted census tracts, and that the mean PM2.5 for NHB cases in the mortality model is significantly higher than that of Non‐Hispanic White cases. The distinct distribution of PM2.5 for NHB cases results in a relatively higher information value, and therefore faster uncertainty reduction, for new NHB cases introduced into the mortality model. This newfound influence of exposure disparities in the rate of uncertainty reduction highlights the importance of minority representation in environmental research as a quantitative advantage to produce more confident estimates of the true effects of environmental pollution.
Publisher
American Geophysical Union (AGU)
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sources of Air Pollutants: Impacts and Solutions;The Handbook of Environmental Chemistry;2024