Surface Wind Speed Changes and Their Potential Impact on Wind Energy Resources Across China During 1961–2021

Author:

Zhao Xi1,Wu Yi1ORCID,Su Jiajia1,Gou Jiaojiao1ORCID

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China

Abstract

AbstractEnabling the rational use of energy and the realization of the “dual carbon goals” across China will require systematic analysis of temporal and spatial changes in surface wind speed (SWS), determination of key factors influencing SWS, and quantification of wind energy resources. We investigated changes of SWS and their potential impact on wind energy resources using daily SWS data from meteorological observations and based on wind power density (WPD) across China during 1961–2021. The SWS changes were related to atmospheric circulation, surface friction (urbanization and vegetation changes), aerosol emissions and the replacement of observation instruments. The increase of SWS after 2015 was closely related to changes of atmospheric circulation that were reflected by changes of Asian Meridional Circulation Index, North Atlantic Oscillation, and Arctic Oscillation. Compared with the mean SWS, the extreme SWS exhibited a more obvious downward trend and earlier abrupt change. The annual mean SWS decreased by 16.80% in the last six decades, resulting in a decrease of 47.78% in wind energy potential. Regions with annual WPD more than 100 W · m−2 were mainly in western China, northeastern China, northwestern China and some coastal areas. The WPD decreased mainly in northeastern China, northern China, and some coastal areas during the last six decades; it increased mainly in western China. Regions with annual WPD more than 100 W · m−2 and robust coefficient of variation less than 0.5 are high‐quality wind energy resource areas and were found mainly in western China, northern China, northeast China, and coastal areas.

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3