Fire‐Pollutant‐Atmosphere Components and Its Impact on Mortality in Portugal During Wildfire Seasons

Author:

de Souza Fernandes Duarte Ediclê123ORCID,Salgueiro Vanda123ORCID,Costa Maria João123ORCID,Lucio Paulo Sérgio4ORCID,Potes Miguel123,Bortoli Daniele123ORCID,Salgado Rui123ORCID

Affiliation:

1. Instituto de Ciências da Terra—ICT (Pólo de Évora) Instituto de Investigação e Formação Avançada (IIFA) Universidade de Évora Évora Portugal

2. Earth Remote Sensing Laboratory (EaRSLab) Instituto de Investigação e Formação Avançada (IIFA) Universidade de Évora Évora Portugal

3. Departamento de Física Escola de Ciências e Tecnologia (ECT) Universidade de Évora Évora Portugal

4. Departamento de Ciências Atmosféricas e Climáticas Universidade Federal do Rio Grande do Norte Natal Brazil

Abstract

AbstractThis study analyzed fire‐pollutant‐meteorological variables and their impact on cardio‐respiratory mortality in Portugal during wildfire season. Data of burned area, particulate matter with a diameter of 10 or 2.5 μm (μm) or less (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), temperature, relative humidity, wind speed, aerosol optical depth and mortality rates of Circulatory System Disease (CSD), Respiratory System Disease (RSD), Pneumonia (PNEU), Chronic Obstructive Pulmonary Disease, and Asthma (ASMA), were used. Only the months of 2011–2020 wildfire season (June–July–August–September‐October) with a burned area greater than 1,000 ha were considered. Principal component analysis was used on fire‐pollutant‐meteorological variables to create two indices called Pollutant‐Burning Interaction (PBI) and Atmospheric‐Pollutant Interaction (API). PBI was strongly correlated with the air pollutants and burned area while API was strongly correlated with temperature and relative humidity, and O3. Cluster analysis applied to PBI‐API divided the data into two Clusters. Cluster 1 included colder and wetter months and higher NO2 concentration. Cluster 2 included warmer and dried months, and higher PM10, PM2.5, CO, and O3 concentrations. The clusters were subjected to Principal Component Linear Regression to better understand the relationship between mortality and PBI‐API indices. Cluster 1 showed statistically significant (p‐value < 0.05) correlation (r) between RSDxPBI (rRSD = 0.58) and PNEUxPBI (rPNEU = 0.67). Cluster 2 showed statistically significant correlations between RSDxPBI (rRSD = 0.48), PNEUxPBI (rPNEU = 0.47), COPDxPBI (rCOPD = 0.45), CSDxAPI (rCSD = 0.70), RSDxAPI (rCSD = 0.71), PNEUxAPI (rPNEU = 0.49), and COPDxAPI (rPNEU = 0.62). Cluster 2 analysis indicates that the warmest, driest, and most polluted months of the wildfire season were associated with cardio‐respiratory mortality.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3