Local and Environmental Reservoirs of Salmonella enterica After Hurricane Florence Flooding

Author:

Mao Yuqing12ORCID,Zeineldin Mohamed2ORCID,Usmani Moiz3ORCID,Jutla Antarpreet3ORCID,Shisler Joanna L.24ORCID,Whitaker Rachel J.24ORCID,Nguyen Thanh H.125ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Illinois at Urbana‐Champaign IL Urbana USA

2. Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign IL Urbana USA

3. Engineering School of Sustainable Infrastructure & Environment University of Florida FL Gainesville USA

4. Department of Microbiology University of Illinois at Urbana‐Champaign IL Urbana USA

5. Carle Illinois College of Medicine, University of Illinois at Urbana‐Champaign Urbana IL USA

Abstract

AbstractIn many regions of the world, including the United States, human and animal fecal genetic markers have been found in flood waters. In this study, we use high‐resolution whole genomic sequencing to examine the origin and distribution of Salmonella enterica after the 2018 Hurricane Florence flooding. We specifically asked whether S. enterica isolated from water samples collected near swine farms in North Carolina shortly after Hurricane Florence had evidence of swine origin. To investigate this, we isolated and fully sequenced 18 independent S. enterica strains from 10 locations (five flooded and five unflooded). We found that all strains have extremely similar chromosomes with only five single nucleotide polymorphisms (SNPs) and possessed two plasmids assigned bioinformatically to the incompatibility groups IncFIB and IncFII. The chromosomal core genome and the IncFIB plasmid are most closely related to environmental Salmonella strains isolated previously from the southeastern US. In contrast, the IncFII plasmid was found in environmental S. enterica strains whose genomes were more divergent, suggesting the IncFII plasmid is more promiscuous than the IncFIB type. We identified 65 antibiotic resistance genes (ARGs) in each of our 18 S. enterica isolates. All ARGs were located on the Salmonella chromosome, similar to other previously characterized environmental isolates. All isolates with different SNPs were resistant to a panel of commonly used antibiotics. These results highlight the importance of environmental sources of antibiotic‐resistant S. enterica after extreme flood events.

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3