Affiliation:
1. Nelson Institute Center for Sustainability and the Global Environment University of Wisconsin—Madison Madison WI USA
2. Department of Atmospheric and Oceanic Sciences University of Wisconsin—Madison Madison WI USA
3. Department of Civil and Environmental Engineering University of Illinois—Urbana‐Champaign Urbana IL USA
Abstract
AbstractAir quality models can support pollution mitigation design by simulating policy scenarios and conducting source contribution analyses. The Intervention Model for Air Pollution (InMAP) is a powerful tool for equitable policy design as its variable resolution grid enables intra‐urban analysis, the scale of which most environmental justice inquiries are levied. However, InMAP underestimates particulate sulfate and overestimates particulate ammonium formation, errors that limit the model's relevance to city‐scale decision‐making. To reduce InMAP's biases and increase its relevancy for urban‐scale analysis, we calculate and apply scaling factors (SFs) based on observational data and advanced models. We consider both satellite‐derived speciated PM2.5 from Washington University and ground‐level monitor measurements from the U.S. Environmental Protection Agency, applied with different scaling methodologies. Relative to ground‐monitor data, the unscaled InMAP model fails to meet a normalized mean bias performance goal of <±10% for most of the PM2.5 components it simulates (pSO4: −48%, pNO3: 8%, pNH4: 69%), but with city‐specific SFs it achieves the goal benchmarks for every particulate species. Similarly, the normalized mean error performance goal of <35% is not met with the unscaled InMAP model (pSO4: 53%, pNO3: 52%, pNH4: 80%) but is met with the city‐scaling approach (15%–27%). The city‐specific scaling method also improves the R2 value from 0.11 to 0.59 (ranging across particulate species) to the range of 0.36–0.76. Scaling increases the percent pollution contribution of electric generating units (EGUs) (nationwide 4%) and non‐EGU point sources (nationwide 6%) and decreases the agriculture sector's contribution (nationwide −6%).
Publisher
American Geophysical Union (AGU)
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献