Physics‐Based Approach to Thermospheric Density Estimation Using CubeSat GPS Data

Author:

Mutschler Shaylah M.1ORCID,Axelrad Penina1ORCID,Sutton Eric K.2ORCID,Masters Dallas3ORCID

Affiliation:

1. Ann & H.J. Smead Department of Aerospace Engineering Sciences University of Colorado Boulder Boulder CO USA

2. Space Weather Technology, Research and Education Center (SWx TREC) University of Colorado Boulder Boulder CO USA

3. Spire Global, Inc. Boulder CO USA

Abstract

AbstractIn Low Earth Orbit (LEO), atmospheric drag is the largest contributor to trajectory prediction error. The current thermospheric density model used in operations, the High Accuracy Satellite Drag Model (HASDM), applies corrections to an empirical density model every 3 hr using observations of 75+ calibration satellites. This work aims to improve global thermospheric density estimation by utilizing a physics‐based space environment model and precise GPS‐based orbit estimates of LEO CubeSats. The data assimilation approach presented here estimates drivers of the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIE‐GCM) every 1.5 hr using CubeSat GPS information. In this work, Spire Global CubeSat data are used to demonstrate the method using only 10 satellites; the true strength of the method is its potential to exploit data already collected on large LEO constellations (hundreds of CubeSats). Precise Orbit Determination (POD) information from 10 CubeSats over 12 days is used to sense a global density field when Kp historical data show a minor and moderate geomagnetic storm in succession. This paper provides a direct comparison of estimated density, derived by our new method, to HASDM and Swarm mission derived density. A propagation analysis is also executed by comparing the CubeSat POD data to orbits propagated using our estimated density versus HASDM density. The analyses show that the estimated density is within 35% of HASDM during storm‐time conditions, and that the propagation using the estimated density yields an improvement of 26% over NRLMSISE‐00 compared to HASDM, while outperforming HASDM during the second storm peak.

Funder

National Defense Science and Engineering Graduate

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3