Formation and Motion of Horse Collar Aurora Events

Author:

Bower G. E.1ORCID,Milan S. E.12,Paxton L. J.3ORCID,Spanswick E.4ORCID,Hairston M. R.5ORCID

Affiliation:

1. School of Physics and Astronomy University of Leicester Leicester UK

2. Birkeland Centre for Space Science Bergen Norway

3. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

4. Department of Physics and Astronomy University of Calgary Calgary AB Canada

5. Space Science Center University of Texas at Dallas Richardson TX USA

Abstract

AbstractThe polar cap can become teardrop shaped through the poleward expansion of the dusk and dawn sectors of the auroral oval, to form what is called horse collar aurora (HCA). The formation of HCA has been linked to dual‐lobe reconnection (DLR) where magnetic flux is closed at the dayside magnetopause. A prolonged period of northward IMF is required for the formation of HCA. HCA have previously been identified in UV images captured by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instrument on‐board the Defense Meteorological Satellite Program (DMSP) spacecraft F16, F17 and F18. Events that have concurrent 630.0 nm all‐sky camera (ASC) data from the Redline Geospace Observatory (REGO) Resolute Bay site are now studied in more detail, making use of the higher cadence of the ASC images compared to DMSP/SSUSI. 11 HCA events are studied and classified based on the IMF conditions at the end of the event. Five of the events were found to end via a southward turning of the IMF, two end with positive By dominated IMF and four with negative By dominance. Under positive (negative) By the arcs move duskward (dawnward) in the northern hemisphere with the opposite true in the southern hemisphere. Under a southward turning the arcs move equatorward. One event is of particular interest as it occurred while there was a transpolar arc (TPA) also present. Understanding the evolution of HCA will allow DLR to be studied in more detail.

Funder

Science and Technology Facilities Council

Norges Forskningsråd

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3