Subtropical Foehn Winds, Southeast Queensland, Australia

Author:

Wiesner Leon1,McGowan Hamish1ORCID,Sturman Andrew2,Dale Tony2

Affiliation:

1. Atmospheric Observation Research Group The University of Queensland QLD Brisbane Australia

2. School of Earth and Environment University of Canterbury Christchurch New Zealand

Abstract

AbstractFoehn winds have been a focus of research in mid‐latitude mountainous regions for more than 150 years, where their onset is typically associated with warm, dry, and gusty winds. This research has now extended into high latitude regions, yet research of foehn winds in subtropical and tropical regions remains scarce. Here we present results from the first investigation of foehn winds in the subtropics of Southeast Queensland (SEQ), Australia. Analysis of meteorological records found that foehn winds occur throughout the year with peak frequency and duration in late winter (August) associated with the passage of shortwave troughs over southern Australia. Modeling of wind fields and atmospheric boundary layer conditions for three case studies was conducted using the Weather Research and Forecasting (WRF) model. Results showed foehn events in SEQ can be associated with mountain waves and hydraulic jump features in the lee of topographic barriers. Over lee slopes, acceleration of wind speeds and topographic channeling of foehn winds was found to occur, along with substantial increases in air temperature, and decreases in relative humidity. Warming of the foehn airstream is believed to occur primarily through isentropic drawdown with a likely contribution from surface sensible heat flux. Recommendations for future research are made in light of the importance of foehn winds to wildfire management and mitigation in SEQ.

Funder

University of Queensland

University of Canterbury

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3