Affiliation:
1. Department of Mathematics and Statistics University of Exeter Exeter UK
2. Global Systems Institute University of Exeter Exeter UK
3. School of Geography, Earth and Environmental Sciences University of Birmingham Birmingham UK
Abstract
AbstractThe Arctic is estimated to have warmed up to four times faster than the rest of the globe since the 1980s. There is significant interest in understanding the mechanisms by which such warming may impact weather and climate at lower latitudes. One such mechanism is the “stratospheric pathway”; Arctic warming is proposed to induce a wave‐driven weakening of the stratospheric polar vortex, which may subsequently impact large‐scale tropospheric circulation. However, recent comprehensive model studies have found systematic differences in both the magnitude and sign of the stratospheric response to Arctic warming. Using a series of idealized model simulations, we show that this response is sensitive to characteristics of the warming and mean polar vortex strength. In all simulations, imposed polar warming amplifies upward wave propagation from the troposphere, consistent with comprehensive models. However, as polar warming strength and depth increases, the region through which waves can propagate is narrowed, inducing wave breaking and deceleration of the flow in the lower stratosphere. Thus, the mid‐stratosphere is less affected, with reduced sudden stratospheric warming frequency for stronger and deeper warming compared to weaker and shallower warming. We also find that the sign of the stratospheric response depends on the mean strength of the vortex, and that the stratospheric response in turn plays a role in the magnitude of the tropospheric jet response. Our results help explain the spread across multimodel ensembles of comprehensive climate models.
Publisher
American Geophysical Union (AGU)