An Improved Non‐Local Planetary Boundary Layer Parameterization Scheme in Weather Forecasting and Research Model Based on a 1.5‐Order Turbulence Closure Model

Author:

Zhang W.1ORCID,Fung J. C. H.12ORCID,Wong M. M. F.1ORCID

Affiliation:

1. Division of Environment and Sustainability Hong Kong University of Science and Technology Hong Kong China

2. Department of Mathematics Hong Kong University of Science and Technology Hong Kong China

Abstract

AbstractPlanetary boundary layer (PBL) modeling is a primary contributor to uncertainties in a numerical weather prediction (NWP) model due to difficulties in modeling the turbulent transport of surface fluxes. The Weather Research and Forecasting model (WRF) has provided many PBL schemes that may feature a non‐local transport component driven by large eddies or a one‐and‐half order turbulence closure model, but few of them possess the two features at once. In the present study, a turbulent kinetic energy (TKE)‐based eddy diffusivity/viscosity method is integrated into the non‐local Asymmetric Convective Model version 2 (ACM2) PBL scheme and implemented in WRF. The original first‐order eddy‐diffusivity term in ACM2 is discarded and an extra prognostic equation for TKE, which considers the tendency of TKE by buoyancy, wind shear, vertical transport, and dissipative processes, is supplied to calculate the diffusivity/viscosity. Non‐local transport is modeled the same as ACM2 using the transilient matrix method. Idealized tests using prescribed surface heat flux and roughness length are performed. TKE‐ACM2 displays advantages over the PBL scheme developed by Bougeault and Lacarrère (hereinafter referred to as Boulac) and ACM2 in the wind speeds (WS) profile because it better matches large‐eddy simulations results in the surface momentum flux. Real case simulations show that TKE‐ACM2 generally outperforms in the diurnal vertical profiles of WS under stable conditions. TKE‐ACM2 also produces a better alignment under moderately unstable conditions in the early nighttime at the urban LiDAR station. However, the model exhibits discrepancies more apparently under a more unstable condition during the winter daytime.

Funder

Research Grants Council, University Grants Committee

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3