Marine Fuel Regulations and Engine Emissions: Impacts on Physicochemical Properties, Cloud Activity and Emission Factors

Author:

Santos L. F. E. D.1ORCID,Salo K.2,Kong X.1ORCID,Hartmann M.13ORCID,Sjöblom J.4,Thomson E. S.1ORCID

Affiliation:

1. Department of Chemistry and Molecular Biology Atmospheric Science University of Gothenburg Gothenburg Sweden

2. Department of Mechanics and Maritime Sciences Maritime Studies Chalmers University of Technology Gothenburg Sweden

3. Now at Department for Atmospheric Microphysics Leibniz Institute for Tropospheric Research Leipzig Germany

4. Department of Mechanics and Maritime Sciences Combustion and Propulsion Systems Chalmers University of Technology Gothenburg Sweden

Abstract

AbstractMarine regulations aim to reduce sulfur and nitrogen exhaust emissions from maritime shipping. Here, two compliance pathways for reducing sulfur dioxide emissions, fuel sulfur content reduction and exhaust wet scrubbing, are studied for their effects on physicochemical properties and cloud forming abilities of engine exhaust particles. A test‐bed diesel engine was utilized to study fresh exhaust emissions from combustion of non‐compliant, high sulfur content fuel with (WS) and without (HiS) the usage of a wet scrubber as well as a regulatory compliant, low sulfur content fuel (LoS). Particle number emissions are decreased by ≈99% when switching to LoS due to absence of 20–30 nm sulfate rich particles. While number emissions for WS are also decreased, a shift in the sulfate mode toward larger sizes was found to increase particle mass emission factors by at least 31%. Changes in the mixing state induced by the compliance measures are reflected in the hygroscopicity of the exhaust particles. Fuel sulfur reduction decreased cloud condensation nuclei emissions by at least 97% due to emissions of primarily hydrophobic soot particles. Wet scrubbing increased those emissions, mainly driven by changes in particle size distributions. Our results indicate that both compliance alternatives have no obvious impact on the ice forming abilities of 200 nm exhaust particles. These detailed results are relevant for atmospheric processes and might be useful input parameters for cloud‐resolving models to investigate ship aerosol‐cloud interactions and to quantify the impact of shipping on radiative budgets from local to global scales.

Funder

Swedish Foundation for International Cooperation in Research and Higher Education

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3