Assessing the Impact of Climate Change on Atmospheric Rivers: A Modeling Perspective

Author:

Ordaz Osorio C.123ORCID,Booth J. F.12ORCID,LeGrande A. N.34ORCID,Naud C. M.4ORCID

Affiliation:

1. Department of Physics Graduate Center City University of New York New York NY USA

2. Department of Earth and Atmospheric Sciences City College City University of New York New York NY USA

3. NASA Goddard Institute for Space Studies New York NY USA

4. Center for Climate Systems Research Columbia University New York NY USA

Abstract

AbstractAtmospheric rivers (ARs) play a crucial role in the poleward transport of water vapor, and the AR‐associated precipitation is a critical component of global water supplies, making it critical that we understand how ARs may change in the future. To approach this issue, integrations of the NASA Goddard Institute for Space Studies global climate model ModelE version 2.1 (GISSE2.1) are employed. Multiple configurations of the model simulating different climates are analyzed: (a) the last‐glacial maximum; (b) present day; (c) the end of the 21st century. The thermodynamic and dynamic components of changes to AR frequency are analyzed using a decomposition method. This method utilizes differences in distinct AR seasonal climatology frequencies derived from various vertically integrated water vapor transport (IVT) thresholds to resolve AR frequency into its components. Global mean state changes in poleward AR frequency for different climates are dominated by precipitable water vapor (PWV) changes. A set of idealized cold and warm climates in which present day sea surface temperatures are uniformly changed are considered for a targeted analysis of the south Pacific Ocean basin. For this analysis, frequency and distribution of AR events in the model runs are analyzed by comparing them to changes in the jet stream as well as the Eulerian storm tracks and low‐level baroclinicity. Latitudinal shifts in the ARs in the south Pacific Ocean basin using our integrations are not as tightly coupled to these two storm‐related climatological metrics in the midlatitudes but fare better on the poleward side of the storm tracks.

Publisher

American Geophysical Union (AGU)

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3