Affiliation:
1. University of Wyoming Laramie WY USA
2. Now at Hunan Climate Center Changsha China
3. Department of Applied Physics and Applied Mathematics Columbia University New York NY USA
4. NASA Goddard Institute for Space Studies (GISS) New York NY USA
Abstract
AbstractShifts in Southern Ocean (SO, 40–85°S) shortwave cloud feedback (SWFB) toward more positive values are the dominant contributor to higher effective climate sensitivity (ECS) in Coupled Model Intercomparison Project Phase 6 (CMIP6) models. To provide an observational constraint on the SO SWFB, we use a simplified physical model to connect SO SWFB with the response of column‐integrated liquid water mass (LWP) to warming and the susceptibility of albedo to LWP in 50 CMIP5 and CMIP6 GCMs. In turn, we predict the responses of SO LWP using a cloud‐controlling factor (CCF) model. The combination of the CCF model and radiative susceptibility explains about 50% of the variance in the GCM‐simulated SWFB in the SO. Observations of SW radiation fluxes, LWP, and CCFs from reanalysis are used to constrain the SO SWFB. Observations suggest a SO LWP increase in response to warming and albedo susceptibility to LWP that is on the lower end relative to GCMs. The overall constraint on the contribution of SO to global mean SWFB is −0.168 to +0.051 W m−2 K−1, relative to −0.277 to +0.270 Wm−2 K−1. In summary, observations suggest SO SWFB is less likely to be as extremely positive as predicted by some CMIP6 GCMs, but more likely to range from moderately negative to weakly positive.
Funder
Earth Sciences Division
Goddard Institute for Space Studies
National Science Foundation
Publisher
American Geophysical Union (AGU)