Sources of NH4+ in PM2.5 and Their Seasonal Variations in Urban Tianjin China: New Insights From the Seasonal δ15N Values of NH3 Source

Author:

Xiao Hao12,Ding Shiyuan2,Li Xiaodong2ORCID

Affiliation:

1. School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China

2. School of Earth System Science Institute of Surface‐Earth System Science Tianjin University Tianjin China

Abstract

AbstractThe stable nitrogen isotopic composition (δ15N) has been widely used to quantify sources of ammonium (NH4+) in PM2.5. However, the overlap and uncertainty in δ15N values from different NH3 sources, coupled with their seasonal variability, hinder accurate identification of NH4+ source. Here, the δ15N values of various NH3 source samples collected by the active sampler were determined. Subsequently, we measured the δ15N values of NH4+ in PM2.5, which were collected seasonally in Tianjin. We found that the combustion‐related NH3 (c‐NH3) exhibiting higher δ15N values compared to volatile NH3 (v‐NH3), but all δ15N values was fell within the range reported by previous studies. Furthermore, inconsistent seasonal variations were observed in the δ15N‐NH3 values originating from emissions of agricultural soil and human excreta. The application of the Bayesian isotope mixing model (MixSIAR model) revealed a significant increase in the contribution of v‐NH3 to NH4+ when incorporating current source data, as opposed to previous data, for δ15N of NH3 source. Notably, the contribution of v‐NH3 (53.1%) to NH4+ was almost equivalent to that of c‐NH3 (46.9%) when considering the seasonal δ15N signatures of NH3 source. Additionally, the estimated contribution of v‐NH3 to NH4+ exhibited significant seasonal variability, which is more reasonable than in the non‐seasonal scenario. This study demonstrated that v‐NH3 and c‐NH3 contributed to NH4+ in PM2.5 in Tianjin almost equally, and it is highlighted that the seasonal δ15N values of NH3 sources should be considered when estimating the contributions of different NH3 sources to NH4+ in PM2.5 by the MixSIAR model.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3